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General solution and invariants for a class of lagrangian 
equations governed by a velocity-dependent potential energy 
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Seminarie Analytische Mechanica, Rijksuniversiteit Gent, B-9000 Gent. Belgium 

Received 3 January 1973 

Abstract. I t  is shown that every generalized force derived from a velocity-dependent potential 
energy and independent of the acceleration, can be written as an ti dimensional 'Lorentz 
force' with quantities E and B satisfying generalized Maxwell equations. The equations of 
motion in an n dimensional Cartesian space and with B = B(t)B,  are integrated after reduc- 
tion to canonical form. Expressions for two sets of invariants of the system are constructed 
and a relationship is shown with a class of well known exact and adiabatic invariants for the 
motion of a time-dependent harmonic oscillator and of a charged particle in a uniform 
time-dependent magnetic field. 

1. Introduction 

I t  is a well known fact (Goldstein 1959) that the nonhomogeneous Lagrange equations 

(i = 1 , .  . . , n), -- _ _  dt ?qi E:= Q i  

where q,  are the generalized coordinates, Q, the generalized forces and T i s  the kinetic 
energy, can be made homogeneous, provided the generalized forces are derived from a 
'velocity-dependent potential energy' U(q, q, t )  by the following prescription : 

In such case the Lagrange equations of motion become 

with L = T -  U .  

Asssuming now that Q, may not depend upon the generalized acceleration, U must be a 
linear function of the generalized velocity (Mercier 1963) 
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With this expression for U ,  (1) becomes 

or written in vector notation 

Q =  - V 4  - - + ( V A - ( V A ) T ) .  C?A 4. 
d t  

If we define the following quantities : 

(3) 

B = V A - ( V A ) T .  (4b) 

Q is given by 

Q = E + B  . 4 .  
Although the quantities E and B need not describe an electromagnetic phenomenon, 
equation (5) is a direct generalization of the Lorentz force formula (for unit charge) in 
three-dimensional electrodynamics. I t  is easily proved by the lemma of Poincare for 
differential forms (eg Flanders 1963), that the necessary and sufficient conditions for the 
existence of appropriate ‘scalar and vector potentials’ 4 and A satisfying (4), are 

ZlB 
? t  

V E - ( V q T  = --, 

BT = -B.  (6c) 

Equations (6a) and (66) generalize the homogeneous Maxwell equations. 
If q is the vector with components q l , .  . . , qn defined in n dimensional Cartesian 

configuration space, thekineticenergy Tcan be writtenas T = $4’. Thus the Lagrangian 
becomes 

L = T - U  . L e 2  24 + 4 . A - 4 ,  (7) 

q = E + B . q .  (8) 

4 = 0,  A = $B(t )q .  Bo, (9)t 

which leads to  the equations of motion 

In  this paper we discuss the case where 

Bo being an arbitrary constant skew-symmetric tensor of second rank. The ‘generalized 
fields’ E and B are then 

E = $B(t)B,-, . q ,  (loa) 

B = B(t)B,, (104 

t A scalar potential of the form q5 = fq( t )q2 could- be included without significant modifications. 
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so that the equations of motion finally become 

q -  B(t)Bo. q-+B(t)B,. q = 0. ( 1  1)  

In 3 2 these equations are brought into a canonical form in order to  find the general 
solution with the aid of the eigenvectors of B i  (8 3). Typical invariants of the system are 
easily obtained in § 4. Finally, these invariants are interpreted in 3 5 by showing the 
relationship with adiabatic invariants for the motion of a time-dependent harmonic 
oscillator and of a charged particle in a uniform time-dependent magnetic field. 

2. Reduction of equation (11) to the canonical form 

Several authors (eg Hertweck and Schluter 1957, Lewis 1968b) have established the 
relationship of the motion of a charged particle with the time-dependent harmonic 
oscillator. We will demonstrate this fact in our n dimensional case. 

I f  we put 

q = A . u  (12) 

into (1 1) and require the coefficient of U in the resulting equation to vanish, the tensor A 
must obey the differential equation 

A-+BB,. A = 0. 

A solution of the latter is given by 

where 

@ ( t )  = 4 j' B(t') dt'. 

Equations (12) and (1 3) reduce equations 

ii+R2 .U = 0, 

with 

R2 = -$B2Bi = -02(t)B, 

1 I )  to the canonical form 

(15) 

3. Solution of the system (15) 

With the idea of decoupling the system of equations (15), we first make some remarks 
about the eigenvalues and eigenvectors of the skew-symmetric tensor Bo and the 
symmetric tensor B i .  We first discuss the case for which the number of degrees of 
freedom is even, n = 2m. The case of odd n can easily be reduced to the former one. 

Bo has n constant, purely imaginary, complex conjugate eigenvalues A,, .i: 
( j  = 1, .  . . , m), which for the moment are supposed to be distinct, with corresponding 
eigenvectors G,, GT. If we put c, = k,+iqj ( j  = 1 , .  . . , m) for the eigenvector correspond- 
ing to the eigenvalue A, = iw,, we have, equating the real parts and the imaginary 
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parts on both sides of the eigenvalue equation for Bo,  

Bo.6, = - ~ j q j ,  

Bo. q j  = wJGj3 

from which we get 
Bo. 2 6 j  = -wfkj ,  

B i  . q j  = - ~ f q j .  

Hence, 6, and qJ are different (real) eigenvectors corresponding to the same (real) eigen- 
value -0: of B i .  The vectors ($,, q,) form a complete set of orthonormal eigenvectors, 
which we suppose to be normalized 

6J * 6 k  = '1) q k  = ' J k .  k J . q k = O .  ( j , k =  1 , . . . ,  m). (19) 

uJ = wJ(t)  exp( f i $J ( i ) )uJ ,  (20) 

We now shall attempt to find a particular solution of (1  5 )  of the form 

where uJ is any eigenvector 5, or qJ of Bg. If we choose 

uj will be a particular solution of (15). provided w j ( t )  is a particular solution of the non- 
linear differential equation 

ii.j+W;W2(t)M:.-w:3 J J  = 0. (22) 

We then immediately conclude that the general solution of equation (15) can be written 
as 

, , I  

U = 1 wj(r){(AJ~j+Bjqj)cos$j+(Cj6j+Djqj)sin $ j j , ,  (23) 

A j ,  B,. C j .  D j  being 2n arbitrary constants. I t  is easily verified that the 2n terms con- 
tained in (23) are indeed linearly independent particular solutions of (15). Equations 
(12), (13) and (23) then yield the general solution for q. which after some straightforward 
calculations, using equations (17) and ( I Q  can be written 

j =  I 

4 = exp($Bo).u 
I l l  

= wj  COS$~{(A~ cos(wj$)+Bj sin(wj$)Ej-(Aj sin(wjq5)-Bj cos(wj$)hj; 
j = l  

111 

+ w j  sin $ j { (C j  cos(oj$)+ D j  sin(wj$))kj 
j =  1 

-(Cj sin(oj$)- D j  cos(ujq5))qj). (24) 
If n = 2m+ 1, the matrix associated with the tensor Bo is singular and has at least 

one vanishing eigenvalue lo = 0. The equations (23) and (24) then must be augmented 
with an independent solution (Aot j- Bo)uo, where uo is the eigenvector corresponding 

If the multiplicity of an eigenvalue of Bo is greater than one, we still can construct 
a set of orthonormal eigenvectors for the tensor B i .  The independency of the particular 

to A o .  
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solutions in (23) remains valid, even though we only need one w,(t) for each degenerate 
eigenvalue. 

The equations (22) ( j  = 1,. . . . m) are generalizations of similar equations obtained 
by different authors (Courant and Snyder 1958. Lewis 1968a. Symon 1970) in one- 
and two-dimensional problems. I t  was, however, never mentioned before, that in 
order to construct a particular solution of the nonlinear equation ( 2 2 )  it  suffices to 
find a particular solution of the linear equation 

.?, + W:W2(t  Jx, = 0. 

Indeed. if x, is any such particular solution, then 
2 112 

\Vj = xj{l + (s' x i 2  dt.) ] 
is a corresponding particular solution of equation (22). 

4. Invariants of the system 

From the general solution (23)  for U and the orthogonality equations (19). the following 
relations may be established : 

wkkh . U - vi.,&, . U = ck cos IC/, - A ,  sin I), 
and 

w; ' 5 k  . U = C ,  sin IC/, + A ,  cos IC/,. 

from which I N  invariants can immediately be obtained. namely 

In the same way. i t  is seen that 

31,,,,, = (\tkq!, s - lkkqh U)' + ( w i  '7, . U)' = Bi  + 0; ( k  = 1, .  . . . n7) (254  

are ni other incariants. With the help of the transformation (12). (13). these n( = 2m) 
invariants 1,. I , , ,+ ,  can be expressed in terms of the original variables q.  If we consider 
the components of q with respect to the n orthogonal unit vectors 6,. flk. defined by 

4 .  6 k  = q k .  4 . q k  = ( ? m + h  ( k  = 1 , .  . . . n7) (26) 

and use equations (171, (18), (19), the invariants I,, lm ik  take the form 
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Another set of m invariants is related to the existence of a cyclic angle variable in 
each ( q k ,  ijm+k) plane. According to equations (7) and (9), the lagrangian of the system 
(1 1) is given by 

L = $ j Z + w ( t ) q . B , . 4  
m ni 

or, introducing polar coordinates in each (qk, i j n i + k )  plane, 
nt m 

where ijk = pk cos 6, and ijm+k = pk sin 8,. Each 6, being cyclic, we conclude that the 
conjugate momenta 

are m constants of motion. 

5. Interpretation of the invariants 

Making the scalar product of equations (11) once with {k,  once with qk, we obtain the 
system of equations of motion for i j k  and 

Since for each k, the equations (30) do not involve components of q other than ijk and 
i j m + k ,  we can treat them separately. They could, for example, describe the projection 
of the motion of a charged particle in a time-varying uniform magnetic field on a plane 
perpendicular to the magnetic field direction. Then 2okw(t) stands for &(t), the absolute 
value of the magnetic field. 

Lewis (1968b) has studied these equations introducing a complex variable. Reducing 
the resulting equation to the canonical form (the one-dimensional harmonic oscillator), 
he obtained a complex invariant, which is not very significant for the charged particle 
motion. 

We prefer to reduce the equations (30) directly to the canonical form by means of 
the transformation (12), (13), which here takes the form 

q k  = Uk cos(wk4)+ C p i + k  sin(wk4), 

q m  + k = - c k  sin(@&) + c n ,  + k cos(wk4), 

(314 

(314 

with i i k  = U .  and = U .  f l k .  Geometrically this represents a transition to a 
rotating reference frame and reduces equations (30) to those of a two-dimensional 
harmonic oscillator 

i k  + Wk2w2(t)fik = 0, (324 

(32b) 2 2  fim+k+wka ( f ) f i m + k  = 0. 
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So the invariants I ,  and Inl+k given by equations (25), which were obtained directly 
from the general solution of equations (11). are in agreement with the results obtained 
by Lewis (1 968a) for the one-dimensional oscillator. 

Furthermore, if m(t )  = i B ( t )  is a slowly varying function of time, and if a particular 
solution for Lt’k is obtained by a series expansion in some small parameter c. then I ,  
and I,,, give rise to so called ‘asymptotic or adiabatic’ invariants to all orders of the 
system (32). the zeroth order terms corresponding exactly with the historically first 
concept of adiabatic invariance (Burgers 1917). 

I t  is easily verified that the invariants I,. In]+, in the form (27). for slowly varying 
o4t) and using the series solution for wk (Lewis 1968a). still have the property which 
nowadays is mostly used to define adiabatic invariance to all orders (eg Coffey 1966. 
Stern 1971). namely 

j ; ’  = .(cn*l), ( x  = k or m + k )  

where 1:) stands for the sum of the first n +  1 terms in the expansion of I ,  as a power 
series in E. The same is true of course for the invariant 

ps ,  being always a time-independent invariant of the system (30) in hamiltonian form. 
Now a straightforward calculation shows that the zeroth order term in the expansion 

for J k  equals. 

so that J k  yields the adiabatic invariant series for the magnetic moment of the charged 
particle motion governed by equations (30). 

Note that, applying on the system (30) a perturbation technique. established by 
Kruskal (1962). one obtains an invariant series with of course the same zeroth order 
term. The first order term obtained in this way after rather tedious calculations still 
equals the first order term in the expansion for J, .  which is merely generated by 
+ ( l , + l n , t k ) .  In particular. the result (34) shows that the adiabatic invariance of the 
magnetic moment in the motion of a charged particle in a uniform but time-dependent 
magnetic field is essentially the same as the adiabatic invariance of the ratio E / v  for 
the harmonic oscillator. a connection already mentioned by Chandrasekhar (1958). 

We finally remark that, if the invariant J k  is written in polar coordinates, we get 

Pk with Rk = -, 
U’k 

while 2(1, + I n I i k )  gives an expression equivalent to the invariant mentioned by Lewis 
(1968b) in his equation (22) .  
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